イタノ ナオキ   ITANO NAOKI
  板野 直樹
   所属   京都産業大学  生命科学部 先端生命科学科
   職種   教授
言語種別 英語
発行・発表の年月 1999/12
形態種別 研究論文
査読 査読あり
標題 Increased synthesis of hyaluronate enhances motility of human melanoma cells
執筆形態 その他
掲載誌名 JOURNAL OF INVESTIGATIVE DERMATOLOGY
出版社・発行元 BLACKWELL SCIENCE INC
巻・号・頁 113(6),pp.935-939
著者・共著者 T Ichikawa,N Itano,T Sawai,K Kimata,Y Koganehira,T Saida,S Taniguchi
概要 Hyaluronate plays a unique role in the cancer cell microenvironment. In particular, melanoma is the tumor type in which hyaluronate and hyaluronate recognition have been most closely linked to malignancy. In this study we show that a human melanoma cell line stably transfected with hyaluronate synthase cDNA displays enhanced motility. We used a fixed erythrocyte exclusion assay to isolate subsets of the WM793 human melanoma cell line that expressed either high or low amounts of hyaluronate. A cell line with a high level of hyaluronate on its surface (WM793H) displayed significantly higher cell motility on colloidal-gold-coated coverslips than did a line with a low level (WM793L). Next, in order to directly investigate the effects of hyaluronate on melanoma cell migration, we transfected cDNA encoding mouse hyaluronate synthase HAS1 or HAS2 into the re-cloned human melanoma cell line that produced a low amount of hyaluronate (WM793L) by the lipofection method. Several clonal transfectants differentially producing hyaluronate were obtained. There was a positive correlation between total hyaluronate synthesis and formation of the pericellular hyaluronate-rich matrix. We observed an increase in the migration ability of hyaluronate cDNA (HAS1 or HAS2)-transfected cells compared with control cells on glass plates covered with colloidal gold particles, A migration-inhibition assay with anti-CD44 monoclonal antibody showed blocking of the cell motility. It is speculated that the tumor cells might migrate through a hyaluronate-rich extracellular environment when they invade nearby host tissues and that hyaluronate production by the tumor cells could increase this migration, These results suggest that hyaluronate may play a role in the aggressiveness of human melanoma cells.
ISSN 0022-202X