モトハシ タケシ   MOTOHASHI TAKESHI
  本橋 健
   所属   京都産業大学  生命科学部 先端生命科学科
   職種   教授
言語種別 英語
発行・発表の年月 2009/07
形態種別 研究論文
査読 査読あり
標題 Regulation of Translation by the Redox State of Elongation Factor G in the Cyanobacterium Synechocystis sp PCC 6803
執筆形態 その他
掲載誌名 JOURNAL OF BIOLOGICAL CHEMISTRY
出版社・発行元 AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
巻・号・頁 284(28),pp.18685-18691
著者・共著者 Kouji Kojima,Ken Motohashi,Takuya Morota,Masaru Oshita,Toru Hisabori,Hidenori Hayashi,Yoshitaka Nishiyama
概要 Elongation factor G (EF-G), a key protein in translational elongation, was identified as a primary target of inactivation by reactive oxygen species within the translational machinery of the cyanobacterium Synechocystis sp. PCC 6803 (Kojima, K., Oshita, M., Nanjo, Y., Kasai, K., Tozawa, Y., Hayashi, H., and Nishiyama, Y. (2007) Mol. Microbiol. 65, 936-947). In the present study, we found that inactivation of EF-G (Slr1463) by H(2)O(2) was attributable to the oxidation of two specific cysteine residues and formation of a disulfide bond. Substitution of these cysteine residues by serine residues protected EF-G from inactivation by H(2)O(2) and allowed the EF-G to mediate translation in a translation system in vitro that had been prepared from Synechocystis. The disulfide bond in oxidized EF-G was reduced by thioredoxin, and the resultant reduced form of EF-G regained the activity to mediate translation in vitro. Western blotting analysis showed that levels of the oxidized form of EF-G increased under strong light in a mutant that lacked NADPH-thioredoxin reductase, indicating that EF-G is reduced by thioredoxin in vivo. These observations suggest that the translational machinery is regulated by the redox state of EF-G, which is oxidized by reactive oxygen species and reduced by thioredoxin, a transmitter of reducing signals generated by the photosynthetic transport of electrons.
DOI 10.1074/jbc.M109.015131
ISSN 0021-9258
NAID 120002384305
PMID 19447882