宇野 勝博 所属 京都産業大学 理学部 数理科学科 職種 客員教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2006/03 |
形態種別 | 研究論文 |
査読 | 査読あり |
標題 | Algebraic structure of association schemes of prime order |
執筆形態 | 共著 |
掲載誌名 | JOURNAL OF ALGEBRAIC COMBINATORICS |
掲載区分 | 国外 |
出版社・発行元 | SPRINGER |
巻・号・頁 | 23(2),pp.189-195 |
著者・共著者 | A Hanaki,K Uno |
概要 | Finite groups of prime order must be cyclic. It is natural to ask what about association schemes of prime order. In this paper, we will give an answer to this question. An association scheme of prime order is commutative, and its valencies of nontrivial relations and multiplicities of nontrivial irreducible characters are constant. Moreover, if we suppose that the minimal splitting field is an abelian extension of the field of rational numbers, then the character table is the same as that of a Schurian scheme. |
DOI | 10.1007/s10801-006-6923-7 |
ISSN | 0925-9899 |