ヨネハラ アツノリ   YONEHARA ATSUNORI
  米原 厚憲
   所属   京都産業大学  理学部 宇宙物理・気象学科
   職種   教授
言語種別 英語
発行・発表の年月 2016/12
形態種別 研究論文
査読 査読あり
標題 The Exoplanet Mass-Ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass
執筆形態 その他
掲載誌名 The Astrophysical Journal
巻・号・頁 833(2),pp.article id. 145
著者・共著者 D. Suzuki,D. P. Bennett,T. Sumi,I. A. Bond,L. A. Rogers,F. Abe,Y. Asakura,A. Bhattacharya,M. Donachie,M. Freeman,A. Fukui,Y. Hirao,Y. Itow,N. Koshimoto,M. C. A. Li,C. H. Ling,K. Masuda,Y. Matsubara,Y. Muraki,M. Nagakane,K. Onishi,H. Oyokawa,N. Rattenbury,To. Saito,A. Sharan,H. Shibai,D. J. Sullivan,P. J. Tristram,A. Yonehara
概要 We report the results of the statistical analysis of planetary signals<br />
discovered in MOA-II microlensing survey alert system events from 2007 to 2012.<br />
We determine the survey sensitivity as a function of planet-star mass ratio,<br />
$q$, and projected planet-star separation, $s$, in Einstein radius units. We<br />
find that the mass ratio function is not a single power-law, but has a change<br />
in slope at $q \sim 10^{-4}$, corresponding to $\sim 20 M_{\oplus}$ for the<br />
median host star mass of $\sim 0.6 M_{\odot}$. We find significant planetary<br />
signals in 23 of the 1474 alert events that are well characterized by the<br />
MOA-II survey data alone. Data from other groups are used only to characterize<br />
planetary signals that have been identified in the MOA data alone. The<br />
distribution of mass ratios and separations of the planets found in our sample<br />
are well fit by a broken power-law model of the form $dN_{\rm pl}/(d{\rm log}<br />
q\ d{\rm log} s) = A (q/q_{\rm br})^n s^m \, {\rm dex}^{-2}$ for $q &gt; q_{\rm<br />
br}$ and $dN_{\rm pl}/(d{\rm log} q\ d{\rm log} s) = A (q/q_{\rm br})^p s^m \,<br />
{\rm dex}^{-2}$ for $q &lt; q_{\rm br}$, where $q_{\rm br}$ is the mass ratio of<br />
the break. We also combine this analysis with the previous analyses of Gould et<br />
al. and Cassan et al., bringing the total sample to 30 planets. This combined<br />
analysis yields $A = 0.61^{+0.21}_{-0.16}$, $n =-0.93\pm 0.13$, $m =<br />
0.49_{-0.49}^{+0.47}$ and $p = 0.6^{+0.5}_{-0.4}$ for $q_{\rm br}\equiv<br />
1.7\times 10^{-4}$. The unbroken power law model is disfavored with a $p$-value<br />
of 0.0022, which corresponds to a Bayes factor of 27 favoring the broken<br />
power-law model. These results imply that cold Neptunes are likely to be the<br />
most common type of planets beyond the snow line.
DOI 10.3847/1538-4357/833/2/145
arXiv ID arXiv:1612.03939
PermalinkURL http://arxiv.org/abs/1612.03939v1