|
ナカジマ ユウスケ
中嶋 祐介 所属 京都産業大学 理学部 数理科学科 職種 准教授 |
|
| 言語種別 | 英語 |
| 発行・発表の年月 | 2018/05 |
| 形態種別 | 研究論文 |
| 査読 | 査読あり |
| 標題 | Dual F-signature of special Cohen-Macaulay modules over cyclic quotient surface singularities |
| 執筆形態 | 単著 |
| 掲載誌名 | Journal of Commutative Algebra |
| 掲載区分 | 国外 |
| 出版社・発行元 | Rocky Mountain Mathematics Consortium |
| 巻・号・頁 | 10(1),pp.83-105 |
| 著者・共著者 | Yusuke Nakajima |
| 概要 | The notion of F-signature was defined by Huneke and Leuschke and this numerical invariant charac- terizes some singularities. This notion is extended to finitely generated modules by Sannai and is called dual F-signature. In this paper, we determine the dual F-signature of a certain class of Cohen-Macaulay modules (so-called "special") over cyclic quotient surface singularities. Also, we compare the dual F-signature of a special Cohen-Macaulay module with that of its Auslander-Reiten translation. This gives a new characterization of the Gorensteinness. |
| NAID | 1939-2346 |