新山 雅之
   所属   京都産業大学  理学部 物理科学科
   職種   教授
発行・発表の年月 2019/08
形態種別 その他
査読 査読あり
標題 Test of lepton flavor universality in $B \to K \ell^{+}\ell^{-}$ decays
執筆形態 その他
著者・共著者 A. Abdesselam,I. Adachi,K. Adamczyk,J. K. Ahn,H. Aihara,S. Al Said,K. Arinstein,Y. Arita,D. M. Asner,H. Atmacan,V. Aulchenko,T. Aushev,R. Ayad,T. Aziz,V. Babu,I. Badhrees,S. Bahinipati,A. M. Bakich,Y. Ban,V. Bansal,E. Barberio,M. Barrett,W. Bartel,P. Behera,C. Beleño,K. Belous,J. Bennett,M. Berger,F. Bernlochner,D. Besson,V. Bhardwaj,B. Bhuyan,T. Bilka,J. Biswal,T. Bloomfield,A. Bobrov,A. Bondar,G. Bonvicini,A. Bozek,M. Bračko,N. Braun,F. Breibeck,T. E. Browder,M. Campajola,L. Cao,G. Caria,D. Če
概要 We present measurements of the branching fractions for the decays $B\to K
\mu^{+}\mu^{-}$ and $B\to K e^{+}e^{-}$, and their ratio ($R_{K}$), using a
data sample of 711 $fb^{-1}$ that contains $772 \times 10^{6}$ $B\bar{B}$
events. The data were collected at the $\Upsilon(4S)$ resonance with the Belle
detector at the KEKB asymmetric-energy $e^{+}e^{-}$ collider. The ratio $R_{K}$
is measured in four bins of dilepton invariant-mass squared, $q^{2}$; the
results are \begin{eqnarray*} R_{K} = \begin{cases}
0.95~ ^{+0.27}_{-0.24} \pm 0.06 & q^{2} \in (0.1,4.0)~\mathrm{\,GeV^2}c^4 \,
,
0.81~ ^{+0.28}_{-0.23} \pm 0.05 & q^{2} \in (4.0,8.12)~\mathrm{\,GeV^2}c^4 \,
,
0.98~ ^{+0.27}_{-0.23} \pm 0.06 & q^{2} \in (1.0,6.0)~\mathrm{\,GeV^2}c^4 \,
,
1.11~ ^{+0.29}_{-0.26} \pm 0.07 & q^{2} > 14.18~\mathrm{\,GeV^2}c^4 \, .
\end{cases} \end{eqnarray*} The first uncertainties listed are statistical, and
the second uncertainties are systematic. The $R_{K}$ value in the whole $q^2$
range is found to be $1.06~ ^{+0.15}_{-0.14} \pm 0.07$. We also measure
$CP-$averaged isospin asymmetries in the same $q^{2}$ bins; the results are
consistent with a null asymmetry with the largest difference of 2.7 standard
deviations is found in the $q^{2}\in(1.0,6.0)~\mathrm{\,GeV^2}c^4 \,$ bin in
the mode with muon final states. The measured branching fractions are $\cal
B\rm{\it(B\to K \mu^{+}\mu^{-})}= (5.5 \pm0.5 \pm0.3) \times 10^{-7}$ and $\cal
B\rm{\it(B\to K e^{+}e^{-})} = (5.1 \pm 0.5 \pm0.3) \times 10^{-7}$. These
results are compatible with standard model expectations.
DOI 10.1007/JHEP03(2021)105
PermalinkURL http://arxiv.org/abs/1908.01848v3
researchmap用URL http://arxiv.org/pdf/1908.01848v3