新山 雅之 所属 京都産業大学 理学部 物理科学科 職種 教授 |
|
発行・発表の年月 | 2021/05 |
形態種別 | その他 |
標題 | The study of $γγ\toγψ(2S)$ at Belle |
執筆形態 | その他 |
著者・共著者 | X. L. Wang,B. S. Gao,W. J. Zhu,I. Adachi,H. Aihara,S. Al Said,D. M. Asner,H. Atmacan,V. Aulchenko,T. Aushev,R. Ayad,V. Babu,S. Bahinipati,P. Behera,V. Bhardwaj,B. Bhuyan,T. Bilka,J. Biswal,A. Bobrov,G. Bonvicini,A. Bozek,M. Bračko,M. Campajola,D. Červenkov,M. -C. Chang,V. Chekelian,A. Chen,B. G. Cheon,K. Chilikin,H. E. Cho,K. Cho,S. -K. Choi,Y. Choi,S. Choudhury,D. Cinabro,S. Cunliffe,S. Das,G. De Nardo,R. Dhamija,F. Di Capua,Z. Doležal,T. V. Dong,S. Eidelman,T. Ferber,D. Ferlewicz,A. Frey,B. G. |
概要 | Using $980~\rm fb^{-1}$ of data on and around the $\Upsilon(nS)(n=1,2,3,4,5)$
resonances collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, the two-photon process $\gamma\gamma\to \gamma\psi(2S)$ is studied from the threshold to $4.2~{\rm GeV}$ for the first time. Two structures are seen in the invariant mass distribution of $\gamma\psi(2S)$: one at $M_{R_1} = 3922.4\pm 6.5 \pm 2.0~{\rm MeV}/c^2$ with a width of $\Gamma_{R_1} = 22\pm 17\pm 4~{\rm MeV}$, and another at $M_{R_2} = 4014.3\pm 4.0 \pm 1.5~{\rm MeV}/c^2$ with a width of $\Gamma_{R_2} = 4\pm 11 \pm 6~{\rm MeV}$; the signals are parametrized with the incoherent sum of two Breit-Wigner functions. The first structure is consistent with the $X(3915)$ or the $\chi_{c2}(3930)$, and the local statistical significance is determined to be $3.1\sigma$ with the systematic uncertainties included. The second matches none of the known charmonium or charmoniumlike states, and its global significance is determined to be $2.8\sigma$ including the look-elsewhere effect. The production rates are $\Gamma_{\gamma\gamma}{\cal B}(R_1\to\gamma\psi(2S)) = 9.8\pm 3.6\pm 1.2~{\rm eV}$ assuming $(J^{PC}, |\lambda|) =(0^{++}, 0)$ or $2.0\pm 0.7\pm 0.2~{\rm eV}$ with $(2^{++}, 2)$ for the first structure and $\Gamma_{\gamma\gamma}{\cal B}(R_2\to\gamma\psi(2S)) = 6.2\pm 2.2\pm 0.8~{\rm eV}$ with $(0^{++}, 0)$ or $1.2\pm 0.4\pm 0.2~{\rm eV}$ with $(2^{++}, 2)$ for the second one. Here, the first errors are statistical and the second systematic, and $\lambda$ is the helicity. |
DOI | 10.1103/PhysRevD.105.112011 |
PermalinkURL | http://arxiv.org/abs/2105.06605v3 |
researchmap用URL | http://arxiv.org/pdf/2105.06605v3 |