新山 雅之 所属 京都産業大学 理学部 物理科学科 職種 教授 |
|
発行・発表の年月 | 2021/04 |
形態種別 | その他 |
標題 | Measurements of branching fractions and asymmetry parameters of $Ξ^0_c\to Λ\bar K^{*0}$, $Ξ^0_c\to Σ^0\bar K^{*0}$, and $Ξ^0_c\to Σ^+K^{*-}$ decays at Belle |
執筆形態 | その他 |
著者・共著者 | Belle Collaboration,S. Jia,S. S. Tang,C. P. Shen,I. Adachi,H. Aihara,S. Al Said,D. M. Asner,V. Aulchenko,T. Aushev,R. Ayad,V. Babu,S. Bahinipati,P. Behera,J. Bennett,M. Bessner,T. Bilka,J. Biswal,A. Bobrov,G. Bonvicini,A. Bozek,M. Bracko,T. E. Browder,M. Campajola,D. Cervenkov,M. -C. Chang,V. Chekelian,A. Chen,B. G. Cheon,K. Chilikin,H. E. Cho,K. Cho,S. -J. Cho,S. -K. Choi,Y. Choi,S. Choudhury,D. Cinabro,S. Cunliffe,S. Das,G. De Nardo,R. Dhamija,F. Di Capua,Z. Dolezal,T. V. Dong,S. Eidelman,D. E |
概要 | Using a data sample of 980 fb$^{-1}$ collected with the Belle detector at the
KEKB asymmetric-energy $e^+e^-$ collider, we study the processes of $\Xi^0_c\to \Lambda\bar K^{*0}$, $\Xi^0_c\to \Sigma^0\bar K^{*0}$, and $\Xi^0_c\to \Sigma^+K^{*-}$ for the first time. The relative branching ratios to the normalization mode of $\Xi^0_c\to\Xi^-\pi^+$ are measured to be $${\cal B}(\Xi^0_c\to \Lambda\bar K^{*0})/{\cal B}(\xic\to \Xi^-\pi^+)=0.18\pm0.02({\rm stat.})\pm0.01({\rm syst.}),$$ $${\cal B}(\Xi^0_c\to \Sigma^0\bar K^{*0})/{\cal B}(\xic\to \Xi^-\pi^+)=0.69\pm0.03({\rm stat.})\pm0.03({\rm syst.}),$$ $${\cal B}(\Xi^0_c\to \Sigma^+K^{*-})/{\cal B}(\xic\to \Xi^-\pi^+)=0.34\pm0.06({\rm stat.})\pm0.02({\rm syst.}),$$ where the uncertainties are statistical and systematic, respectively. We obtain %measure the branching fractions of $\Xi^0_c\to \Lambda\bar K^{*0}$, $\Xi^0_c\to \Sigma^0\bar K^{*0}$, and $\Xi^0_c\to \Sigma^+K^{*-}$ to be $${\cal B}(\Xi^0_c\to \Lambda\bar K^{*0})=(3.3\pm0.3({\rm stat.})\pm0.2({\rm syst.})\pm1.0({\rm ref.}))\times10^{-3},$$ $${\cal B}(\Xi^0_c\to \Sigma^0\bar K^{*0})=(12.4\pm0.5({\rm stat.})\pm0.5({\rm syst.})\pm3.6({\rm ref.}))\times10^{-3},$$ $${\cal B}(\Xi^0_c\to \Sigma^+K^{*-})=(6.1\pm1.0({\rm stat.})\pm0.4({\rm syst.})\pm1.8({\rm ref.}))\times10^{-3},$$ where the uncertainties are statistical, systematic, and from ${\cal B}(\xic \to \Xi^-\pi^+)$, respectively. The asymmetry parameters $\alpha(\Xi^0_c\to \Lambda\bar K^{*0})$ and $\alpha(\Xi^0_c\to \Sigma^+K^{*-})$ are $0.15\pm0.22({\rm stat.})\pm0.04({\rm syst.})$ and $-0.52\pm0.30({\rm stat.})\pm0.02({\rm syst.})$, respectively, where the uncertainties are statistical followed by systematic. |
DOI | 10.1007/JHEP06(2021)160 |
PermalinkURL | http://arxiv.org/abs/2104.10361v3 |
researchmap用URL | http://arxiv.org/pdf/2104.10361v3 |