イタノ ナオキ   ITANO NAOKI
  板野 直樹
   所属   京都産業大学  生命科学部 先端生命科学科
   職種   教授
言語種別 英語
発行・発表の年月 2012/07
形態種別 研究論文
査読 査読あり
標題 Hyaluronan Expressed by the Hematopoietic Microenvironment Is Required for Bone Marrow Hematopoiesis
執筆形態 その他
掲載誌名 JOURNAL OF BIOLOGICAL CHEMISTRY
出版社・発行元 AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
巻・号・頁 287(30),pp.25419-25433
著者・共著者 Valentina Goncharova,Naira Serobyan,Shinji Iizuka,Ingrid Schraufstatter,Audrey de Ridder,Tatiana Povaliy,Valentina Wacker,Naoki Itano,Koji Kimata,Irina A. Orlovskaja,Yu Yamaguchi,Sophia Khaldoyanidi
概要 The contribution of hyaluronan (HA) to the regulatory network of the hematopoietic microenvironment was studied using knock-out mice of three hyaluronan synthase genes (Has1, Has2, and Has3). The number of hematopoietic progenitors was decreased in bone marrow and increased in extramedullary sites of Prx1-Cre;Has2(flox/flox); Has1(-/-); Has3(-/-) triple knock-out (tKO) mice as compared with wild type (WT) and Has1(-/-); Has3(-/-) double knock-out (dKO) mice. In line with this observation, decreased hematopoietic activity was observed in long term bone marrow cultures (LTBMC) from tKO mice, whereas the formation of the adherent layer and generation of hematopoietic cells in WT and dKO cultures was not different. 4-Methylumbelliferone (4MU) was used to pharmacologically inhibit the production of HA in LTBMC. Treatment with 4MU inhibited HA synthesis, decreased expression of HAS2 and HAS3, and eliminated hematopoiesis in LTBMC, and this effect was alleviated by the addition of exogenous HA. Exogenous HA also augmented the cell motility in LTBMC, which correlated with the HA-stimulated production of chemokines and growth factors. Conditioned media from HA-induced LTBMC enhanced the chemotaxis of hematopoietic stem/progenitor cells (HSPC) in response to SDF-1. Exposure of endothelial cells to 4MU decreased their ability to support HSPC rolling and adhesion. In addition, migration of transplanted HSPC into the marrow of 4MU-pretreated mice was lower than in untreated mice. Collectively, the results suggest that HA depletion reduces the ability of the microenvironment to support HSPC, and confirm a role for HA as a necessary regulatory element in the structure of the hematopoietic microenvironment.
DOI 10.1074/jbc.M112.376699
ISSN 0021-9258