カワイ ユキコ   KAWAI YUKIKO
  河合 由起子
   所属   京都産業大学  情報理工学部 情報理工学科
   職種   教授
言語種別 英語
発行・発表の年月 2016
形態種別 研究論文(国際会議プロシーディングス)
査読 査読あり
標題 TweeVist: A Geo-Tweet Visualization System for Web based on Spatio-Temporal Events
執筆形態 その他
掲載誌名 2016 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS)
出版社・発行元 IEEE COMPUTER SOC
巻・号・頁 pp.729-734
著者・共著者 Yuanyuan Wang,Yukiko Kawai,Kazutoshi Sumiya,Yoshiharu Ishikawa
概要 This paper presents TweeVist, a geo-tweet visualization system to support users grasp event happens over time and space from tweets while they browse any web pages based on spatio-temporal analysis. TweeVist presents a tag cloud of tweets in different time periods are associated with web pages based on detected events. In order to detect events, the system extracts normal events (e.g., crowded restaurants, crowded facilities in Walt Disney World) happen at anytime and anywhere by utilizing machine learning algorithms, and it also extracts unusual or special events (e.g., time sales, disasters) by comparing current situation to those normal regularities. Thus, TweeVist can effectively visualize a summary of tweets in a tag cloud to help users immediately gain a quick overview of current situation or events through time and space while they browse a web page, and it can also effectively present a list of most related tweets to help users easily obtain more detailed information. Furthermore, TweeVist provides a communication function, which allows users to chat with other users who browse the same web pages, or Twitter users who follow an account of TweeVist.
DOI 10.1109/ICIS.2016.7550845
DBLP ID conf/ACISicis/WangKSI16
PermalinkURL http://dblp.uni-trier.de/db/conf/ACISicis/ACISicis2016.html#conf/ACISicis/WangKSI16