宇野 勝博 所属 京都産業大学 理学部 数理科学科 職種 客員教授 |
|
研究期間 | 2000~2001 |
研究課題 | 代数群と量子群の表現の総合的研究 |
実施形態 | 科学研究費補助金 |
研究委託元等の名称 | 文部科学省 |
研究種目名 | 基盤研究(A) |
研究機関 | 大阪大学 |
代表分担区分 | 連携研究者 |
研究者・共同研究者 | 川中宜明,宇野勝博,庄司俊明,三木敬,伊達悦朗,谷崎俊之,村上順,有木進 |
概要 | 本研究の対象を,便宜上(1)アフィン・リー代数,(2)ヘッケ環,(3)有限シュヴァレー群,(4)複素鏡映群,(5)量子群,の5つに分け,おのおのに関する成果の概要を以下に述べる。 (1)谷崎俊之(柏原正樹氏との共同研究)は,アフィン・リー代数の既約最高ウェイト加群のうち,最高ウェイトが臨界レベルを持たないものに対して,その指標を完全に決定した。最高ウェイトが有理的な場合は,これまでの柏原氏との共同研究で解決していたが,Jantzen氏による論法を用いることにより,一般の場合を上の場合に帰着させた. (2)宇野勝博は,1992年の論文において,ヘッケ代数の直既約加群の同型類が有限個となる為の条件を予想したが,有木進がこの「宇野予想」を古典型の場合に解決した。例外型の場合も含めた完全な解決も時間の問題と思われる. (3)庄司俊明は,有限シュヴァレー群の表現論で基本的なグリーン関数を,古典群の場合に組合せ論的に構成する方法を与えた.これは一般線型群の場合のGreenの理論の直接的拡張である.同じ構成法はワイル群をある種の複素鏡映群に置き換えても可能である. (4)川中宣明は,複素鏡映群の既約表現に対する不変量を新たに定義し,imprimitiveな場合に具体的に計算した.行者明彦らは,この不変量をすべてのワイル群の場合に具体的に計算し,それがLusztig氏の「両側セル」の概念と不... |
PermalinkURL | https://kaken.nii.ac.jp/p/12304002 |